# ANALISA SUSUT DAYA PADA SISTEM DISTRIBUSI JARINGAN TEGANGAN MENENGAH

Hamles L. Latupeirissa<sup>1)</sup>, Halamoan M. Muskita<sup>2)</sup>, T.J. Tahalele<sup>3)</sup>

1,2,3) Jurusan Teknik Elektro, Politeknik Negeri Ambon 1) leo.lidya.6475@gmail.com, 2) h.m.muskita@gmail.com, 3) tahalelethonyferts@gmail.com

#### **ABSTRACT**

To expand the distribution network system, one of the criteria that needs to be met is high efficiency, without neglecting the economic aspects. Good efficiency will be achieved if the energy losses can be reduced as small as possible. Shrinkage on distribution network systems is one of the considerations, both in planning and operation, because it affects investment costs. In calculating these power losses some limitations need to be done, namely the calculation of power losses is carried out due to the presence of resistance from one air channel and one medium voltage cable channel as a sample. While the power losses due to the influence of inductance and capacitance are ignored. The next step is to calculate the power losses of the distribution transformer, in the form of core and copper shrinkage. While shrinkage due to stress on the channel, including due to insulators or cable insulation, is not taken into account. The results of the analysis show that the real power loss / shrinkage per substation ranges from 582.92 Watts to 1001.78 Watts. The smallest power losses occurred at KTAKP1007 (0.42%) substations and the largest power losses occurred at KTAKP1008 substations (1.15%). The total amount of feeder shrinkage is 16031.66 watts or 18.10%. still normal or not exceeding the provisions of the SPLN of 20%.

#### **ABSTRAK**

Untuk memperluas sistem jaringan distribusi, salah satu kriteria yang perlu dipenuhi adalah efisiensi yang besar, tanpa mengabaikan aspek ekonomi. Efisiensi yang baik akan dicapai bila susut energi dapat ditekan sekecil mungkin. Susut pada sistem jaringan distribusi menjadi salah satu pertimbangan, baik dalam perencanaan maupun pengoperasian, karena mempengaruhi biaya investasi. Dalam perhitungan susut daya ini perlu dilakukan beberapa batasan, yaitu perhitungan susut daya dikerjakan akibat adanya resistansi dari satu saluran udara dan satu saluran kabel tegangan menengah sebagai sampel. Sedangkan susut daya akibat pengaruh induktansi dan kapasitansi diabaikan. Selanjutnya dilakukan perhitungan susut daya dari transformator disribusi, berupa susut inti dan tembaga. Sedangkan susut akibat tegangan pada saluran, termasuk akibat isolator atau isolasi kabel, tidak diperhitungkan. Hasil analisis memperlihatkan bahwa rugi/susut daya nyata per gardu berkisar antara 582.92 Watt sampai dengan 1001,78 Watt. Susut daya terkecil terjadi pada gardu KTAKP1007 (0,42 %) dan susut daya terbesar terjadi pada gardu KTAKP1008 (1,15 %). Besarnya total susut daya penyulang sebesar 16031,66 watt atau 18,10 %. masih normal atau tidak melebihi ketentuan pada SPLN sebesar 20 %.

Kata Kunci: Susu Daya; Jaringan Tegangan Menengah

#### 1. PENDAHULUAN

### 1.1 Latar Belakang

Sistem kelistrikan secara keseluruhan meliputi bagian pembangkitan, transmisi, dan distribusi.Sistem distribusi yang berfungsi menyalurkan dan mendistribusikan energi listrik ke konsumen perlu kualitas yang memadai. Berdasarkan informasi dari PT. PLN (Persero) Cab. Ambon, sebagian besar susut energi listrik terdapat pada jaringan distribusi. Oleh karena itu susut pada sistem jaringan tersebut perlu diperhitungkan lebih teliti.

Untuk memperluas sistem jaringan distribusi, salah satu kriteria yang perlu dipenuhi adalah efisiensi yang besar, tanpa mengabaikan aspek ekonomi. Efisiensi yang baik akan dicapai bila susut energi dapat ditekan sekecil

mungkin. Susut pada sistem jaringan distribusi menjadi salah satu pertimbangan, baik dalam perencanaan maupun pengoperasian, karena mempengaruhi biaya investasi (Bambang, 2001; Gonen, 1986; Sulasno, 2000).

Pada umumnya, susut daya pada jaringan distribusi berkisar 10% (APEI, 2003). Biasanya perhitungan susut energi pada sistem jaringan distribusi dilakukan dengan menggunakan selisih energi terjual dengan yang diterima pada setiap penyulang. Mengingat pentingnya informasi mengenai besarnya susut pada suatu jaringan distribusi yang dipergunakan dalam perencanaan pengembangan jaringan, maka studi mengenai susut energi pada system jaringan distribusi perlu dilakukan.

Dalam perhitungan susut daya ini perlu dilakukan beberapa batasan, yaitu perhitungan susut daya

dikerjakan akibat adanya resistansi dari satu saluran udara dan satu saluran kabel tegangan menengah sebagai sampel. Sedangkan susut daya akibat pengaruh induktansi dan kapasitansi diabaikan. Selanjutnya dilakukan perhitungan susut daya dari transformator disribusi, berupa susut inti dan tembaga. Sedangkan susut akibat tegangan pada saluran, termasuk akibat isolator atau isolasi kabel, tidak diperhitungkan.

#### 1.2 Permasalahan

Berdasarkan latar belakang, peneliti merumuskan masalah sebagai berikut :

Berapa besar presentasi susut daya pada penyulang/feeder Karpan I kota Ambon?

# 1.3 Tujuan dan Manfaat

# 1.3.1 Tujuan Penelitian

Tujuan penelitian ini adalah menghitung presentasi susut daya pada penyulang/feeder Karpan I kota Ambon.

#### 1.3.2 Manfaat Penelitian

Hasil penelitian ini diharapkan dapat digunakan sebagai salah satu bahan pertimbangan dalam perbaikan sistem jaringan yang ada atau dalam perencanaan pembangunan jaringan baru.

#### 2. TINJAUAN PUSTAKA

# 2.1 Pengertian Susut Daya listrik

Susut daya atau rugi daya listrik adalah berkurangnya pasokan daya yang dikirimkan oleh sumber pasokan (PLN) kepada yang diterima dalam hal ini konsumen, artinya daya yang hilang akibat susut daya merupakan daya yang dibangkitkan namun tidak terjual. Dalam hal ini pihak penyedia daya listrik (PLN), menderita kerugian akibat membangkitkan daya dengan biaya yang cukup besar tetapi tidak mendapatkan keuntungan finansial dari hasil penjualan daya tersebut. Susut daya jaringan listrik yang biasa terjadi pada sistem transmisinya dinyatakan dengan persamaan :

Saluran pendek

PL=3 
$$I^2 R_L$$
 ......(1)  
Saluran panjang/ jarak jauh

Saturan panjang/ jarak jaun

Rugi-rugi daya menurut perumusan Conen (1987) adalah:

$$PL = 3 RxL (I^2 - I I_C sin \varphi r + I_C^2)$$
 ......(2) di mana :

PL = Hilang daya (watt)

R = Tahanan kawat per fasa ( $\Omega$ / Km)

L = Panjang saluran (Km)

Cosφr = Faktor – daya beban / ujung penerima

I = Arus beban (A)

 $I_C$  = Arus pemuat pada titik pengiriman (A)

Sedangkan untuk mengetahui besar nilai susut daya listrik dinyatakan dengan Persamaan:

$$P_L = P_S - P_R \qquad (3)$$

Persentase antara daya yang diterima dan daya yang disalurkan dinyatakan dengan persamaan :

p-ISSN: 2302-9579/e-ISSN: 2581-2866

$$P_L = \frac{P_R}{P_S} x 100\%$$
 (4)

 $P_R$  = Daya yang dipakai (KW)

PS = Daya yang dikirimkan (KW)

PL = Hilang/ Susut daya (KW)

Susut daya listrik merupakan persoalan krusial yang dihadapi oleh PLN dan belum dapat sepenuhnya terpecahkan. Pemadaman bergilir kemudian dilakukan untuk menghindarkan sistem mengalami pemadaman total (totally black out). Persoalan kualitas daya merupakan persoalan lain yang diantaranya disebabkan oleh kekurangan pasokan daya listrik.

Persoalan ini meliputi profil tegangan yang buruk, frekuensi tegangan yang tidak stabil serta distori harmonik yang berlebihan. Ketika kontinyuitas pasokan masih merupakan persoalan, hal-hal yang berkaitan dengan persoalan kualitas daya untuk sementara dapat "diabaikan" yang kemudian mengherankan adalah ketika data di lapangan menunjukkan bahwa kapasitas pembangkit yang tersedia lebih dari cukup untuk memikul beban yang ada.

Kesimpulan yang sementara bisa ditarik adalah bahwa terjadi susut daya yang cukup besar di jaringan. Kesimpulan ini diperkuat dengan data di lapangan bahwa susut daya di jaringan cukup besar melebihi estimasi yang ditetapkan. Kerugian finansial akibat susut daya ini merupakan hal yang tidak bisa dihindarkan.

#### 2.2 Rugi Tembaga

Rugi tembaga atau rugi-rugi lainnya berbanding lurus dengan kuadrat beban dan dengan adanya kurva beban versus waktu atau kurva lamanya pembebanan, maka dapatlah dibuat kurva rugi daya/waktu atau kurva lamanya rugi daya dimana setiap ordinatnya berbanding lurus dengan kuadrat setiap ordinat kurva bebannya. Dari kurva rugi daya, dapat pula ditentukan rugi daya rataratanya selama periode tersebut. Luas dari kurva lamanya rugi daya merupakan rugi energi selama periode tersebut. Jadi rugi daya rata-rata = rugi energi selama periode tersebut/lamnya periode tersebut.

Dalam perhitungan rugi energi sebaiknya dipakai faktor rugi yaitu perbandingan antara rugi daya rata-rata dan rugi daya pada beban puncak dalam periode tertentu.

Rugi energi = rugi daya pada beban puncak x faktor rugi x jumlah jam dari periode tersebut

Faktor rugi energi adalah sama denga faktor rugi dibagi dengan faktor beban dalam periode yang sama dan untuk suatu bentuk kurva beban yang umum, terdapat hubungan antara faktor rugi energi dengan faktor beban.

Jadi faktor rugi energi dapat dinyatakan sebagai, faktor rugi energi = faktor rugi daya / faktor beban

Bila faktor rugi energi sudah diketahui atau sudah diasumsikan, persentase rugi (tembaga) pada beban puncak untuk periode tersebut didapat dari persamaan :

Rugi energi (%) = rugi daya pada beban puncak x faktor rugi energi

Rugi energi dalam persen = Rugi daya dalam persen pada beban nominalnya x faktor rugi energi x faktor kapasitas/faktor beban.

#### 2.3 Rugi-rugi Besi

Besaran dari rugi daya konstan seperti rugi besi, rugi bantalan, gesekan dan gesekan anginpada ujung belitan dan sebagainya untuk bermacam bagian dari system tenaga biasanya diketahui dari hasil pengujian maupun pengujian di lapangan. Rugi energi yang konstan ini dapat dihitung dengan mengalikan konstanta rugi dayannya dengan jumlah jam dari selang yang diamati. Bila nilainya akan ditentukan dalam persen, maka konstanta rugi daya harus dalam persen dari nilai beban nominalnya, konstanta rugi energi dapat diturunkandari pernyataan berikut ini:

Rugi energi (%) = Rugi daya dalam persen pada beban nominalnya / factor kapasitas.

# 2.4 Rugi-rugi tidak langsung akibat dari beban

Rugi pada turbin hidrolik, turbin uap dan bagian-bagian lainnya dari sistem tenaga ada yang berbanding lurus dengan kuadrat beban dan ada pula yang konstan. Bentuk kurva dari rugi versus beban untuk tipe pembangkit yang berlainan variasinya satu sama lain cukup besar, sehingga tidak mungkin membuat perhitungan rugi energi sederhana dengan menggunakan faktor tersebut di atas untuk rugi tembaga. Secara umum bentuk kurva dari rugi daya versus beban dapat dibuat dari kurva effesiensi versus beban dan bial kurva beban harian atau bulana diketahui, diutamakan dari kurva lamanya pembebanan, maka kurva rugi daya/waktu dapat dibuat.

Pada PLTA, rugi turbin hidrolik biasanya merupakan rugi yang terbesar dari setiap peralatan sistem. Untuk alasan itulah hal ini perlu mendapat perhatian yan sebesar-besarnya.

# 2.5 Penanggulangan susut teknis

Komputer dapat membantu dalam perhitungan pengurangan susut system. Dengan data masukan yang berbeda-beda, dibuat beberapa alternative kajian mengenai hal ini.Pengurangan susut system menghasilkan penghematan energi, juga peningkatan kapasitasnya. Berbagai cara dapat dilakukan untuk mengurangi susut system antara lain:

- a. Otimalisasi kapasitas beban
  - Pemilihan kapasitas TR (kVA-km) yang dipakai, didasarkan apda pengaturan tegangan dan factor daya normal.
  - Pilih kapasitas saluran TM, kVA-km, dari penghantar standar yang ada, oleh karenanya panjang penyulang TMnya dibatasi. Pada saluran, yang kapasitasnya (kVA-km atau MVA-km)

sudah dilampaui, beban penghantar dapat dikurangi dengan :

- Memindah bebannya ke penyulang lain.
- Mengganti penghantar yang ada dengan yang lebih besar
- Menambah feeder baru dan kemudian mengatur pembagian bebannya.
- Menaikkan kelas tegangan, misalnya dari 6 kv ke 20 kv.
- b. Optimalisasi kapasitas transformator, lokasi, beban yang dipikul.

Pemilihan kapasitas transformator distribusi, dikaitkan dengan macam beban (pelanggan) yang dilayaninya, dengan menjaga agar jatuh tegangan minimum.

Pemilihan lokasi transformator distribusi, dikaitkan dengan macam beban yang dilayani dengan menjaga agar susut tegangan minimum.

Optimalkan pendayagunaan trasformator, didasarkan pada factor beban dari beban yang dilayani.

- Tetap menjaga tingkat tegangan yang diijinkan pada system distribusi.
- d. Memasang kapasitor shunt
  - Gunakan kapasitor shunt pada beban induktif atau apda titik-titik tertentu pada saluran TRnya, dengan mempertimbangkan ekonomis tidaknya.
  - Gunakan kapasitor shunt dengan daya pengenal yang optimum atau titik/lokasi optimum pada penyulang tegangan menengahnya, guna mengurangi rugi daya, susut energi dan menjaga kondisi tegangan. Dalam menangani hal tersebut tindakan yang diambil dapat berupa:
  - Memasang tumpuk kapasitor (bank kapasitor) tetap, guna mendapatkan factor daya 100% atau factor daya sedikit mendahului, selama diluar beban puncaknya.
  - Memasang tumpuk kapasitor yang dapat dimasukkan dan dikeluarkan dari sistem tersebut.
  - Tumpuk kapasitor ini dimasukkan/ dihubungkan ke sistem untuk mengkoreksi faktor dayanya selama beban puncak.

# 3. METODOLOGI

#### 3.1 Lokasi Penelitian

Penelitian ini di laksanakan pada PT. PLN cab, Ambon, khususnya pada trafo distribusi dan saluran yang terpasang pada penyulang/feeder Karpan I.

#### 3.2 Waktu Penelitian

Waktu penelitian susut daya pada sistem distribusi tegangan menengah penyulang Karpan I PT. PLN cabang Ambon, direncanakan selama 3 bulan. Secara terperinci, waktu penelitian dapat dilihat pada lampiran 1 proposal penelitian ini.

Sedangkan rencana penelitian secara terperinci dan tahapan atau proses yang dilakukan agar tujuan penelitian yang dilakukan terlaksana dengan baik dan sesuai rencana, dapat dilihat pada peta petunjuk (roadmap) penelitian berikut:



Sumber: penulis, 2019

Gambar 1. Peta Petunjuk (roadmap) Penelitian

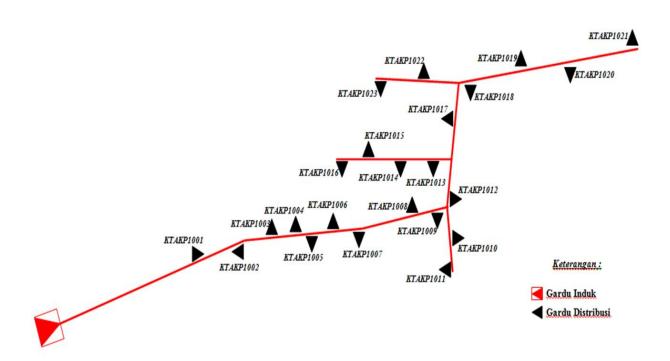
# transformator distribusi yang menjadi objek penelitian.:

4.1.1 Data Transformator

4. HASIL DAN PEMBAHASAN

4.1 Gambaran Umum Lokasi Penelitian

Transformator distribusi yang akan digunakan


sebagai obyek penelitian adalah transformator yang terbebani sebanyak 23 buah trafo distribusi, dengan jenis

gardu transformator portal. Semua transformator tersebut berada di wilayah PT. PLN (Persero) kota Ambon penyulang/feeder Karpan 1. Untuk dapat melakukan perhitungan, maka diperlukan sejumlah data-data masukan, berikut beberapa data masukan dari

Transformator : 3 fasa Jenis pendinginan: ONAN Tegangan primer : 20 KV Jenis gardu : Porta

# 4.1.2 Gambar Deskripsi Penyulang Karpan I

SINGLE LINE DIAGRAM PENYULANG KARPAN I



Gambar 2. Single line penyulang Karpan I

# 4.2 Diskripsi Variabel Penelitian

Tabel 1. Data Pembebanan Penyulang Karpan I

| Tabel 1. Data Pembebanan Penyulang Karpan I |     |           |               |     |               |       |     |                |     |                  |                      |                  |
|---------------------------------------------|-----|-----------|---------------|-----|---------------|-------|-----|----------------|-----|------------------|----------------------|------------------|
|                                             | NO  | Nama      | Daya<br>Trafo | An  | u <u>s</u> TN | ſ (A) | An  | us PH<br>(Volt |     | ī                | angan<br>R (Vo       |                  |
|                                             | 110 | Gardu     | kVA           | IR  | Is            | IT    | IR  | Is             | IT  | V <sub>R</sub> . | V <sub>S-</sub><br>N | V <sub>R</sub> . |
|                                             | 1   | KTAKP1001 | 200           | 3   | 2,8           | 2,4   | 300 | 280            | 240 | 228              | 225                  | 226              |
|                                             | 2   | KTAKP1002 | 250           | 1,8 | 1,5           | 1,9   | 182 | 153            | 189 | 228              | 225                  | 226              |
|                                             | 3   | KTAKP1003 | 250           | 2,6 | 3,1           | 4,3   | 300 | 300            | 400 | 226              | 226                  | 224              |
|                                             | 4   | KTAKP1004 | 200           | 0,9 | 1,4           | 0,8   | 90  | 140            | 80  | 226              | 227                  | 226              |
|                                             | 5   | KTAKP1005 | 200           | 1,2 | 0,9           | 1,2   | 122 | 90             | 124 | 228              | 227                  | 226              |
|                                             | 6   | KTAKP1006 | 200           | 2,3 | 2,7           | 2,1   | 233 | 273            | 213 | 225              | 229                  | 220              |
|                                             | 7   | KTAKP1007 | 200           | 1,2 | 1,1           | 0,6   | 124 | 114            | 64  | 225              | 226                  | 226              |
|                                             | 8   | KTAKP1008 | 400           | 1,8 | 1,5           | 3,5   | 179 | 148            | 350 | 227              | 226                  | 225              |
|                                             | 9   | KTAKP1009 | 315           | 2,2 | 1,9           | 1,7   | 224 | 193            | 169 | 221              | 227                  | 221              |
|                                             | 10  | KTAKP1010 | 200           | 1,7 | 1,8           | 0,9   | 168 | 180            | 90  | 220              | 219                  | 221              |
|                                             |     | _         |               |     |               |       |     |                | _   |                  |                      |                  |
|                                             | 11  | KTAKP1011 | 250           | 2,9 | 3,1           | 3,3   | 302 | 301            | 298 | 223              | 225                  | 224              |
|                                             | 12  | KTAKP1012 | 250           | 1,3 | 1,9           | 2     | 130 | 190            | 200 | 229              | 228                  | 227              |
|                                             | 13  | KTAKP1013 | 250           | 2,6 | 2,4           | 2,7   | 300 | 300            | 298 | 226              | 226                  | 224              |
|                                             | 14  | KTAKP1014 | 200           | 1,2 | 1,2           | 1,1   | 124 | 123            | 124 | 220              | 220                  | 220              |
|                                             | 15  | KTAKP1015 | 200           | 1,4 | 1,5           | 1,3   | 111 | 113            | 114 | 220              | 220                  | 220              |
|                                             | 16  | KTAKP1016 | 200           | 1   | 1             | 1,3   | 96  | 98             | 102 | 220              | 220                  | 220              |
|                                             | 17  | KTAKP1017 | 200           | 2,1 | 2,1           | 2,2   | 233 | 273            | 213 | 221              | 221                  | 220              |
|                                             | 18  | KTAKP1018 | 200           | 1,1 | 1             | 1,2   | 104 | 103            | 104 | 220              | 220                  | 220              |
|                                             | 19  | KTAKP1019 | 200           | 1,6 | 1,6           | 1,8   | 158 | 150            | 157 | 220              | 219                  | 221              |
|                                             | 20  | KTAKP1020 | 200           | 1,3 | 1,2           | 1,2   | 124 | 123            | 124 | 220              | 220                  | 220              |
|                                             | 21  | KTAKP1021 | 250           | 2,8 | 2,7           | 2,8   | 304 | 300            | 380 | 226              | 226                  | 224              |
|                                             | 22  | KTAKP1022 | 200           | 1,2 | 1,2           | 1,1   | 124 | 123            | 124 | 220              | 220                  | 220              |
|                                             |     |           |               |     |               |       |     |                |     |                  |                      |                  |

Sumber: penulis, 2019

23 KTAKP1023

Tabel 2. Data Saluran Penyulang Karpan I

200 1,4 1,4 1,5 111 113 114 220 220 220

| No.  | 0000      | rdu       | Jenis   | Panjang | R        |
|------|-----------|-----------|---------|---------|----------|
| 140. | Awal      | Akhir     | Saluran | (km)    | (ohm/km) |
| 1    | Karpan I  | KTAKP1001 | SUTM    | 2,449   | 0,438    |
| 2    | KTAKP1001 | KTAKP1002 | SUTM    | 0,503   | 0,438    |
| 3    | KTAKP1002 | KTAKP1003 | SUTM    | 0,264   | 0,438    |
| 4    | KTAKP1003 | KTAKP1004 | SUTM    | 0,9     | 0,438    |
| 5    | KTAKP1004 | KTAKP1005 | SUTM    | 0,746   | 0,438    |
| 6    | KTAKP1005 | KTAKP1006 | SUTM    | 0,308   | 0,438    |
| 7    | KTAKP1006 | KTAKP1007 | SUTM    | 0,177   | 0,438    |
| 8    | KTAKP1007 | KTAKP1008 | SUTM    | 1,257   | 0,438    |
| 9    | KTAKP1008 | KTAKP1009 | SUTM    | 1,241   | 0,438    |
| 10   | KTAKP1009 | KTAKP1010 | SUTM    | 1,165   | 0,438    |
| 11   | KTAKP1010 | KTAKP1011 | SUTM    | 0,115   | 0,438    |
| 12   | KTAKP1009 | KTAKP1012 | SUTM    | 0,286   | 0,438    |
| 13   | KTAKP1012 | KTAKP1013 | SUTM    | 0,515   | 0,438    |
| 14   | KTAKP1013 | KTAKP1014 | SUTM    | 0,221   | 0,438    |
| 15   | KTAKP1014 | KTAKP1015 | SUTM    | 0,235   | 0,438    |
| 16   | KTAKP1015 | KTAKP1016 | SUTM    | 0,167   | 0,438    |
| 17   | KTAKP1013 | KTAKP1017 | SUTM    | 0,385   | 0,438    |
| 18   | KTAKP1017 | KTAKP1018 | SUTM    | 0,23    | 0,438    |
| 19   | KTAKP1018 | KTAKP1019 | SUTM    | 0,327   | 0,438    |
| 20   | KTAKP1019 | KTAKP1020 | SUTM    | 0,368   | 0,438    |
| 21   | KTAKP1020 | KTAKP1021 | SUTM    | 0,554   | 0,438    |
| 22   | KTAKP1018 | KTAKP1022 | SUTM    | 0,297   | 0,438    |
| 23   | KTAKP1022 | KTAKP1023 | SUTM    | 0,215   | 0,438    |

Sumber: penulis, 2019

p-ISSN: 2302-9579/e-ISSN: 2581-2866

Tabel 3. Data trafo distribusi penyulang Karpan I

| Timi pun I |           |                             |               |                        |                           |         |  |  |  |  |  |
|------------|-----------|-----------------------------|---------------|------------------------|---------------------------|---------|--|--|--|--|--|
| No.        | Gardu     | Kapasitas<br>Trafo<br>(kVA) | Merk<br>Trafo | Rugi<br>Besi<br>(Watt) | Rugi<br>Tembaga<br>(Watt) | %<br>pf |  |  |  |  |  |
| 1          | KTAKP1001 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |
| 2          | KTAKP1002 | 250                         | Unindo        | 650                    | 3250                      | 85      |  |  |  |  |  |
| 3          | KTAKP1003 | 250                         | Starlite      | 600                    | 3000                      | 85      |  |  |  |  |  |
| 4          | KTAKP1004 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |
| 5          | KTAKP1005 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |
| 6          | KTAKP1006 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |
| 7          | KTAKP1007 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |
| 8          | KTAKP1008 | 400                         | Unindo        | 930                    | 4600                      | 85      |  |  |  |  |  |
| 9          | KTAKP1009 | 315                         | Sintra        | 770                    | 3900                      | 85      |  |  |  |  |  |
| 10         | KTAKP1010 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |
| 11         | KTAKP1011 | 250                         | Starlite      | 600                    | 3000                      | 85      |  |  |  |  |  |
| 12         | KTAKP1012 | 250                         | Starlite      | 600                    | 3000                      | 85      |  |  |  |  |  |
| 13         | KTAKP1013 | 250                         | Unindo        | 550                    | 3250                      | 85      |  |  |  |  |  |
| 14         | KTAKP1014 | 200                         | Starlite      | 600                    | 2400                      | 85      |  |  |  |  |  |
| 15         | KTAKP1015 | 200                         | Starlite      | 600                    | 2400                      | 85      |  |  |  |  |  |
| 16         | KTAKP1016 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |
| 17         | KTAKP1017 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |
| 18         | KTAKP1018 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |
| 19         | KTAKP1019 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |
| 20         | KTAKP1020 | 200                         | Starlite      | 600                    | 2400                      | 85      |  |  |  |  |  |
| 21         | KTAKP1021 | 250                         | Starlite      | 600                    | 3000                      | 85      |  |  |  |  |  |
| 22         | KTAKP1022 | 200                         | Starlite      | 600                    | 2400                      | 85      |  |  |  |  |  |
| 23         | KTAKP1023 | 200                         | Unindo        | 550                    | 2850                      | 85      |  |  |  |  |  |

Sumber: penulis, 2019

# 4.3 Analisis Data Hasil Penelitian

# 4.3.1 Beban Sisi Tegangan Menengah

Data beban pada sisi tegangan menengah diperoleh dari transformasi nilai pada sisi tegangan rendah terhadap perbandingan tegangan pengenal transformator.

$$\begin{split} I_{TM}' &= (V_2/V_1) \ I_{TR} \quad \text{(Ampere)} \\ &= (400/20000) \ x \ ((300 + 280 + 240)/3) \end{split}$$

 $= 0.02 \times 273.3 = 5.47 \text{ A}$ 

 $V_{TM}' = (V_1/V_2) V_{TR}$  (Volt) =  $(20000/400) \times ((228 + 225 + 226)/3)$ 

 $= 50 \times 226,3 = 11317 \text{ Volt}$ 

 $S_{TM}' = V_{TR}' \times I_{TR}' = 11317 \times 5,47$ 

 $= 61904 \text{ VA} \approx 62 \text{ kVA}$ 

Perhitungan untuk seluruh saluran sisi tegangan menengah, dapat dilihat pada tabel berikut .

Tabel 4. Perhitungan beban sisi tegangan menengah

| menengun |               |                         |                          |                            |  |  |  |  |  |  |  |  |
|----------|---------------|-------------------------|--------------------------|----------------------------|--|--|--|--|--|--|--|--|
| No       | Nama<br>Gardu | I <sub>TM</sub> ' (Amp) | V <sub>TM</sub> ' (Volt) | S <sub>TM</sub> '<br>(kVA) |  |  |  |  |  |  |  |  |
| 1        | KTAKP1001     | 5,47                    | 11317                    | 62                         |  |  |  |  |  |  |  |  |
| 2        | KTAKP1002     | 3,49                    | 11317                    | 40                         |  |  |  |  |  |  |  |  |
| 3        | KTAKP1003     | 6,67                    | 11267                    | 75                         |  |  |  |  |  |  |  |  |
| 4        | KTAKP1004     | 2,07                    | 11317                    | 23                         |  |  |  |  |  |  |  |  |
| 5        | KTAKP1005     | 2,24                    | 11350                    | 25                         |  |  |  |  |  |  |  |  |
| 6        | KTAKP1006     | 4,79                    | 11233                    | 54                         |  |  |  |  |  |  |  |  |
| 7        | KTAKP1007     | 2,01                    | 11283                    | 23                         |  |  |  |  |  |  |  |  |
| 8        | KTAKP1008     | 4,51                    | 11300                    | 51                         |  |  |  |  |  |  |  |  |
| 9        | KTAKP1009     | 3,91                    | 11150                    | 44                         |  |  |  |  |  |  |  |  |
| 10       | KTAKP1010     | 2,92                    | 11000                    | 32                         |  |  |  |  |  |  |  |  |
| 11       | KTAKP1011     | 6,01                    | 11200                    | 67                         |  |  |  |  |  |  |  |  |
| 12       | KTAKP1012     | 3,47                    | 11400                    | 40                         |  |  |  |  |  |  |  |  |
| 13       | KTAKP1013     | 5,99                    | 11267                    | 67                         |  |  |  |  |  |  |  |  |
| 14       | KTAKP1014     | 2,47                    | 11000                    | 27                         |  |  |  |  |  |  |  |  |
| 15       | KTAKP1015     | 2,25                    | 11000                    | 25                         |  |  |  |  |  |  |  |  |
| 16       | KTAKP1016     | 1,97                    | 11000                    | 22                         |  |  |  |  |  |  |  |  |
| 17       | KTAKP1017     | 4,79                    | 11033                    | 53                         |  |  |  |  |  |  |  |  |
| 18       | KTAKP1018     | 2,07                    | 11000                    | 23                         |  |  |  |  |  |  |  |  |
| 19       | KTAKP1019     | 3,10                    | 11000                    | 34                         |  |  |  |  |  |  |  |  |
| 20       | KTAKP1020     | 2,47                    | 11000                    | 27                         |  |  |  |  |  |  |  |  |
| 21       | KTAKP1021     | 6,56                    | 11267                    | 74                         |  |  |  |  |  |  |  |  |
| 22       | KTAKP1022     | 2,47                    | 11000                    | 27                         |  |  |  |  |  |  |  |  |
| 23       | KTAKP1023     | 2,25                    | 11000                    | 25                         |  |  |  |  |  |  |  |  |

Sumber: penulis, 2019

# 4.3.2 Arus Nominal Trafo Dan Resistansi Tembaga Per Fasa

Arus nominal transformator

$$I_N = \frac{S_{tr}}{\sqrt{3}V_1} = \frac{200}{1,73x20} = 5,78 \text{ A}$$
  
Resistansi tembaga per fasa

$$R_{Cu} = \frac{P_{Cu1fasa}}{(I_N)^2} = \frac{2850/3}{578^2} = 28,43 \ \Omega$$

Perhitungan arus nominal trafo dan resistansi tembaga per fasa, dapat dilihat pada tabel berikut :

Tabel 5. Perhitungan beban sisi tegangan menengah

| No. | Gardu     | Kapasitas<br>Trafo<br>(kVA) | Tegangan<br>Primer<br>Trafo<br>(kV) | Arus<br>Nominal<br>Trafo | Rcu<br>(Ω) |
|-----|-----------|-----------------------------|-------------------------------------|--------------------------|------------|
| 1   | KTAKP1001 | 200                         | 20                                  | 5,78                     | 28,43      |
| 2   | KTAKP1002 | 250                         | 20                                  | 7,23                     | 20,75      |
| 3   | KTAKP1003 | 250                         | 20                                  | 7,23                     | 19,15      |
| 4   | KTAKP1004 | 200                         | 20                                  | 5,78                     | 28,43      |
| 5   | KTAKP1005 | 200                         | 20                                  | 5,78                     | 28,43      |
| 6   | KTAKP1006 | 200                         | 20                                  | 5,78                     | 28,43      |
| 7   | KTAKP1007 | 200                         | 20                                  | 5,78                     | 28,43      |
| 8   | KTAKP1008 | 400                         | 20                                  | 11,56                    | 11,47      |
| 9   | KTAKP1009 | 315                         | 20                                  | 9,10                     | 15,68      |
| 10  | KTAKP1010 | 200                         | 20                                  | 5,78                     | 28,43      |
| 11  | KTAKP1011 | 250                         | 20                                  | 7,23                     | 19,15      |
| 12  | KTAKP1012 | 250                         | 20                                  | 7,23                     | 19,15      |
| 13  | KTAKP1013 | 250                         | 20                                  | 7,23                     | 20,75      |
| 14  | KTAKP1014 | 200                         | 20                                  | 5,78                     | 23,94      |
| 15  | KTAKP1015 | 200                         | 20                                  | 5,78                     | 23,94      |
| 16  | KTAKP1016 | 200                         | 20                                  | 5,78                     | 28,43      |
| 17  | KTAKP1017 | 200                         | 20                                  | 5,78                     | 28,43      |
| 18  | KTAKP1018 | 200                         | 20                                  | 5,78                     | 28,43      |
| 19  | KTAKP1019 | 200                         | 20                                  | 5,78                     | 28,43      |
| 20  | KTAKP1020 | 200                         | 20                                  | 5,78                     | 23,94      |
| 21  | KTAKP1021 | 250                         | 20                                  | 7,23                     | 19,15      |
| 22  | KTAKP1022 | 200                         | 20                                  | 5,78                     | 23,94      |
| 23  | KTAKP1023 | 200                         | 20                                  | 5,78                     | 28,43      |
|     |           |                             |                                     | ·                        |            |

Sumber: penulis, 2019

#### 4.3.3 Rugi Trafo Pada Saat Pembebanan

Perhitungan rugi transformator pada saat pembebanan, dihitung perfasa pada setiap gardu distribusi dan setiap pembebanan. Nilai rugi besi bersifat konstan, sedangkan nilai rugi tembaga bergantung pada besar arus beban.

# Rugi tembaga:

1. Fasa R

1. Fasa R  

$$P_{Cu} = I_{TM}^2 R_{Cu} = 3^2 x 28,43 = 256 \text{ Watt}$$
  
2. Fasa S

$$P_{Cu} = I_{TM}^2 R_{Cu} = 2.8^2 x 28.43 = 223 \text{ Watt}$$

$$P_{Cu} = I_{TM}^2 R_{Cu} = 2,4^2 x 28,43 = 164 \text{ Watt}$$
  
4. Rata-rata

$$P_{CU} = \frac{\left(P_{CU \, fasa \, R} + P_{CU \, fasa \, S} + P_{CU \, fasa \, T}\right)}{3}$$
$$= \frac{(256 + 223 + 164)}{3} = 214 \, \text{Watt}$$

# Rugi transformator

$$P_{Tr} = P_{C1fasa} + P_{Cu1fasa} = 214 + 550 = 764$$

$$S_{Tr} = \frac{P_{Tr}/\cos\varphi}{1000} = \frac{214/0.85}{1000} =$$
**0.90 kVA**

Prosentasi rugi transformator
$$\%S_{Tr} = \frac{S_{Tr}}{S_{TM'}} x 100 = {0,90 \choose 62} x 100 = 1,45 \%$$

Perhitungan rugi transformator pada saat pembebanan, dapat dilihat pada tabel berikut :

Tabel 6. Perhitungan rugi trafo pada saat pembebanan

| решосванан |           |                        |     |     |       |        |        |       |                   |  |  |  |
|------------|-----------|------------------------|-----|-----|-------|--------|--------|-------|-------------------|--|--|--|
|            |           | P <sub>CU</sub> (Watt) |     | Pc  | Rugi  |        |        |       |                   |  |  |  |
| No.        | Gardu     | R                      | s   | т   | Rata- | (Watt) | PTR    | STR   | % S <sub>TR</sub> |  |  |  |
|            |           |                        |     | -   | Rata  | ` ′    | (Watt) | (kVA) |                   |  |  |  |
| 1          | KTAKP1001 | 256                    | 223 | 164 | 214   | 550    | 764    | 0,90  | 1,45              |  |  |  |
| 2          | KTAKP1002 | 67                     | 47  | 75  | 63    | 650    | 713    | 0,84  | 2,12              |  |  |  |
| 3          | KTAKP1003 | 129                    | 184 | 354 | 223   | 600    | 823    | 0,97  | 1,29              |  |  |  |
| 4          | KTAKP1004 | 23                     | 56  | 18  | 32    | 550    | 582    | 0,69  | 2,93              |  |  |  |
| 5          | KTAKP1005 | 41                     | 23  | 41  | 35    | 550    | 585    | 0,69  | 2,71              |  |  |  |
| 6          | KTAKP1006 | 150                    | 207 | 125 | 161   | 550    | 711    | 0,84  | 1,55              |  |  |  |
| 7          | KTAKP1007 | 41                     | 34  | 10  | 29    | 550    | 579    | 0,68  | 3,00              |  |  |  |
| 8          | KTAKP1008 | 37                     | 26  | 141 | 68    | 930    | 998    | 1,17  | 2,30              |  |  |  |
| 9          | KTAKP1009 | 76                     | 57  | 45  | 59    | 770    | 829    | 0,98  | 2,24              |  |  |  |
| 10         | KTAKP1010 | 82                     | 92  | 23  | 66    | 550    | 616    | 0,72  | 2,26              |  |  |  |
| 11         | KTAKP1011 | 161                    | 184 | 209 | 185   | 600    | 785    | 0,92  | 1,37              |  |  |  |
| 12         | KTAKP1012 | 32                     | 69  | 77  | 59    | 600    | 659    | 0,78  | 1,96              |  |  |  |
| 13         | KTAKP1013 | 140                    | 120 | 151 | 137   | 550    | 687    | 0,81  | 1,20              |  |  |  |
| 14         | KTAKP1014 | 34                     | 34  | 29  | 33    | 600    | 633    | 0,74  | 2,74              |  |  |  |
| 15         | KTAKP1015 | 47                     | 54  | 40  | 47    | 600    | 647    | 0,76  | 3,07              |  |  |  |
| 16         | KTAKP1016 | 28                     | 28  | 48  | 35    | 550    | 585    | 0,69  | 3,17              |  |  |  |
| 17         | KTAKP1017 | 125                    | 125 | 138 | 129   | 550    | 679    | 0,80  | 1,51              |  |  |  |
| 18         | KTAKP1018 | 34                     | 28  | 41  | 35    | 550    | 585    | 0,69  | 3,02              |  |  |  |
| 19         | KTAKP1019 | 73                     | 73  | 92  | 79    | 550    | 629    | 0,74  | 2,17              |  |  |  |
| 20         | KTAKP1020 | 40                     | 34  | 34  | 36    | 600    | 636    | 0,75  | 2,75              |  |  |  |
| 21         | KTAKP1021 | 150                    | 140 | 150 | 147   | 600    | 747    | 0,88  | 1,19              |  |  |  |
| 22         | KTAKP1022 | 34                     | 34  | 29  | 33    | 600    | 633    | 0,74  | 2,74              |  |  |  |
| 23         | KTAKP1023 | 56                     | 56  | 64  | 58    | 550    | 608    | 0,72  | 2,89              |  |  |  |

Sumber: penulis, 2019

# 4.3.4 Perhitungan Daya Dan Arus Sisi Primer Trafo

Daya pada sisi tegangan menengah

$$S_{TM} = S'_{TM} + S_{Tr} = 62 + 0.90 = 63 \text{ kVA}$$

Arus pada sisi tegangan menengah

$$I_{TM} = \frac{S_{TM}}{V_{TM}} = \frac{63}{20} =$$
 3,14 Ampere

Perhitungan daya dan arus pada sisi primer trafo, dapat dilihat pada tabel berikut:

Tabel 7. Perhitungan daya dan arus sisi primer trafo

| u aio |                   |                       |                     |  |  |  |  |  |  |  |
|-------|-------------------|-----------------------|---------------------|--|--|--|--|--|--|--|
| No    | Nama <u>Gardu</u> | S <sub>TM</sub> (kVA) | I <sub>TM</sub> (A) |  |  |  |  |  |  |  |
| 1     | KTAKP1001         | 63                    | 3,14                |  |  |  |  |  |  |  |
| 2     | KTAKP1002         | 40                    | 2,02                |  |  |  |  |  |  |  |
| 3     | KTAKP1003         | 76                    | 3,80                |  |  |  |  |  |  |  |
| 4     | KTAKP1004         | 24                    | 1,20                |  |  |  |  |  |  |  |
| 5     | KTAKP1005         | 26                    | 1,31                |  |  |  |  |  |  |  |
| 6     | KTAKP1006         | 55                    | 2,73                |  |  |  |  |  |  |  |
| 7     | KTAKP1007         | 23                    | 1,17                |  |  |  |  |  |  |  |
| 8     | KTAKP1008         | 52                    | 2,61                |  |  |  |  |  |  |  |
| 9     | KTAKP1009         | 45                    | 2,23                |  |  |  |  |  |  |  |
| 10    | KTAKP1010         | 33                    | 1,64                |  |  |  |  |  |  |  |
| 11    | KTAKP1011         | 68                    | 3,41                |  |  |  |  |  |  |  |
| 12    | KTAKP1012         | 40                    | 2,01                |  |  |  |  |  |  |  |
| 13    | KTAKP1013         | 68                    | 3,41                |  |  |  |  |  |  |  |
| 14    | KTAKP1014         | 28                    | 1,40                |  |  |  |  |  |  |  |
| 15    | KTAKP1015         | 26                    | 1,28                |  |  |  |  |  |  |  |
| 16    | KTAKP1016         | 22                    | 1,12                |  |  |  |  |  |  |  |
| 17    | KTAKP1017         | 54                    | 2,68                |  |  |  |  |  |  |  |
| 18    | KTAKP1018         | 23                    | 1,17                |  |  |  |  |  |  |  |
| 19    | KTAKP1019         | 35                    | 1,74                |  |  |  |  |  |  |  |
| 20    | KTAKP1020         | 28                    | 1,40                |  |  |  |  |  |  |  |
| 21    | KTAKP1021         | 75                    | 3,74                |  |  |  |  |  |  |  |
| 22    | KTAKP1022         | 28                    | 1,40                |  |  |  |  |  |  |  |
| 23    | KTAKP1023         | 26                    | 1,28                |  |  |  |  |  |  |  |

Sumber: penulis, 2019

p-ISSN: 2302-9579/e-ISSN: 2581-2866

# 4.3.5 Rugi Saluran Antara Dua Titik

Perhitungan rugi saluran antara dua titik, misalnya titik X - Y, dihitung untuk setiap segmen, antara titik satu dengan titik yang lainnya, dan dihitung pada masing-masing fasa.

Rugi saluran

$$P_{Sal} = I_{TM}^2 . r. l = 3,14^2 x 0,438 x 2,449 = 11,11$$
 Watt

$$S_{Sal} = \frac{P_{Sal}}{Cos\varphi} = \frac{11,11}{0,85} =$$
**13,07 VA**

Prosentasi rugi saluran

$$\%S_{Sal} = \frac{S_{Sal}}{S_{TM}} \times 100\% = \frac{13,07}{63000} = 0,021\%$$

% $S_{Sal} = \frac{S_{Sal}}{S_{TM}} x 100\% = \frac{13,07}{63000} =$ **0,021** % Rugi saluran seluruh penyulang Karpan I, dapat dilihat pada tabel berikut:

Tabel 8. Perhitungan rugi saluran

|     | C         | ardu      | n.                 | С.               | е.              |
|-----|-----------|-----------|--------------------|------------------|-----------------|
| No. | Awal      | Akhir     | Psaluran<br>(Watt) | Saaluran<br>(VA) | Staluran<br>(%) |
|     | 0000000   | ********* | ` '                | ` '              |                 |
| 1   | Karpan I  | KTAKP1001 | 11,11              | 13,07            | 0,021           |
| 2   | KTAKP1001 | KTAKP1002 | 0,94               | 1,11             | 0,003           |
| 3   | KTAKP1002 | KTAKP1003 | 1,76               | 2,07             | 0,003           |
| 4   | KTAKP1003 | KTAKP1004 | 0,60               | 0,71             | 0,003           |
| 5   | KTAKP1004 | KTAKP1005 | 0,59               | 0,69             | 0,003           |
| 6   | KTAKP1005 | KTAKP1006 | 1,06               | 1,25             | 0,002           |
| 7   | KTAKP1006 | KTAKP1007 | 1,65               | 1,94             | 0,002           |
| 8   | KTAKP1007 | KTAKP1008 | 3,94               | 4,64             | 0,009           |
| 9   | KTAKP1008 | KTAKP1009 | 2,84               | 3,34             | 0,007           |
| 10  | KTAKP1009 | KTAKP1010 | 1,45               | 1,70             | 0,005           |
| 11  | KTAKP1010 | KTAKP1011 | 0,62               | 0,72             | 0,001           |
| 12  | KTAKP1009 | KTAKP1012 | 0,53               | 0,63             | 0,002           |
| 13  | KTAKP1012 | KTAKP1013 | 2,76               | 3,25             | 0,005           |
| 14  | KTAKP1013 | KTAKP1014 | 0,20               | 0,23             | 0,001           |
| 15  | KTAKP1014 | KTAKP1015 | 0,18               | 0,21             | 0,001           |
| 16  | KTAKP1015 | KTAKP1016 | 0,10               | 0,11             | 0,001           |
| 17  | KTAKP1013 | KTAKP1017 | 1,28               | 1,50             | 0,003           |
| 18  | KTAKP1017 | KTAKP1018 | 0,15               | 0,17             | 0,001           |
| 19  | KTAKP1018 | KTAKP1019 | 0,46               | 0,54             | 0,002           |
| 20  | KTAKP1019 | KTAKP1020 | 0,33               | 0,39             | 0,001           |
| 21  | KTAKP1020 | KTAKP1021 | 3,57               | 4,20             | 0,006           |
| 22  | KTAKP1018 | KTAKP1022 | 0,27               | 0,31             | 0,001           |
| 23  | KTAKP1022 | KTAKP1023 | 0,16               | 0,19             | 0,001           |

Sumber: penulis, 2019

#### 4.3.6 Rugi Total Pada JTM

Perhitungan rugi total pada jaringan tegangan menengah berikut.

$$P_{Total} = P_{Tr} + P_{Sal} = 764,2 + 11,1 = 775,31$$
Watt

Rugi-rugi daya total penyulang Karpan I, dapat dilihat pada tabel berikut:

Tabel 9. Perhitungan rugi JTM

|     | Tuber     |           | rdu       | PTR    | Psaluran | $P_{Total}$ |
|-----|-----------|-----------|-----------|--------|----------|-------------|
| No. | Gardu     | Awal      | Akhir     | (Watt) | (Watt)   | (Watt)      |
| 1   | KTAKP1001 | Karpan I  | KTAKP1001 | 764,2  | 11,1     | 775,31      |
| 2   | KTAKP1002 | KTAKP1001 | KTAKP1002 | 712,9  | 0,9      | 713,89      |
| 3   | KTAKP1003 | KTAKP1002 | KTAKP1003 | 822,6  | 1,8      | 824,34      |
| 4   | KTAKP1004 | KTAKP1003 | KTAKP1004 | 582,3  | 0,6      | 582,92      |
| 5   | KTAKP1005 | KTAKP1004 | KTAKP1005 | 585,0  | 0,6      | 585,56      |
| 6   | KTAKP1006 | KTAKP1005 | KTAKP1006 | 711,0  | 1,1      | 712,08      |
| 7   | KTAKP1007 | KTAKP1006 | KTAKP1007 | 861,0  | 1,6      | 862,61      |
| 8   | KTAKP1008 | KTAKP1007 | KTAKP1008 | 997,8  | 3,9      | 1001,78     |
| 9   | KTAKP1009 | KTAKP1008 | KTAKP1009 | 829,3  | 2,8      | 832,12      |
| 10  | KTAKP1010 | KTAKP1009 | KTAKP1010 | 615,8  | 1,4      | 617,22      |
| 11  | KTAKP1011 | KTAKP1010 | KTAKP1011 | 784,6  | 0,6      | 785,20      |
| 12  | KTAKP1012 | KTAKP1009 | KTAKP1012 | 659,4  | 0,5      | 659,91      |
| 13  | KTAKP1013 | KTAKP1012 | KTAKP1013 | 687,0  | 2,8      | 689,79      |
| 14  | KTAKP1014 | KTAKP1013 | KTAKP1014 | 632,6  | 0,2      | 632,84      |
| 15  | KTAKP1015 | KTAKP1014 | KTAKP1015 | 647,1  | 0,2      | 647,26      |
| 16  | KTAKP1016 | KTAKP1015 | KTAKP1016 | 585,0  | 0,1      | 585,07      |
| 17  | KTAKP1017 | KTAKP1013 | KTAKP1017 | 679,5  | 1,3      | 680,74      |
| 18  | KTAKP1018 | KTAKP1017 | KTAKP1018 | 584,6  | 0,1      | 584,74      |
| 19  | KTAKP1019 | KTAKP1018 | KTAKP1019 | 629,2  | 0,5      | 629,69      |
| 20  | KTAKP1020 | KTAKP1019 | KTAKP1020 | 636,5  | 0,3      | 636,80      |
| 21  | KTAKP1021 | KTAKP1020 | KTAKP1021 | 746,7  | 3,6      | 750,23      |
| 22  | KTAKP1022 | KTAKP1018 | KTAKP1022 | 632,6  | 0,3      | 632,91      |
| 23  | KTAKP1023 | KTAKP1022 | KTAKP1023 | 608,5  | 0,2      | 608,64      |

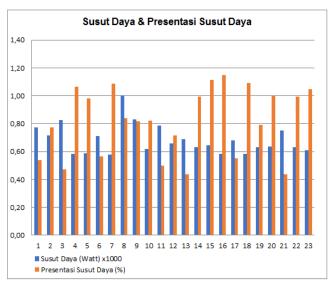
Sumber: penulis, 2019

#### 4.3.7 Presentasi Rugi (Susut) Daya Pada Jaringan Tegangan Menengah

Perhitungan rugi total pada jaringan tegangan menengah berikut.

$$Daya_{Total} = Daya_{Tr} + Daya_{Sal} = 90972 + 53348,97$$

% Rugi Daya =  $\frac{Rugi Daya Total}{Daya Total} x 100\% =$ Daya Total  $\frac{775,31}{14320,64} x 100\%$ 


= 0,54 %

Presentasi rugi (susut) daya penyulang Karpan I, dapat dilihat pada tabel berikut:

Tabel 10. Presentasi rugi daya pada JTM

| No | Nama      | Daya | a Saluran | Daya   | Trafo  | Daya<br>Total | Rugi 1  | Total |
|----|-----------|------|-----------|--------|--------|---------------|---------|-------|
|    | Gardu     | kVA  | Watt      | kVA    | Watt   | Watt          | Watt    | %     |
| 1  | KTAKP1001 | 63   | 53348,97  | 107,03 | 90972  | 144320,64     | 775,31  | 0,54  |
| 2  | KTAKP1002 | 40   | 34315,90  | 68,39  | 58133  | 92449,01      | 713,89  | 0,77  |
| 3  | KTAKP1003 | 76   | 64667,02  | 129,94 | 110451 | 175117,91     | 824,34  | 0,47  |
| 4  | KTAKP1004 | 24   | 20461,93  | 40,46  | 34392  | 54853,66      | 582,92  | 1,06  |
| 5  | KTAKP1005 | 26   | 22195,37  | 43,98  | 37386  | 59581,36      | 585,56  | 0,98  |
| 6  | KTAKP1006 | 55   | 46479,37  | 93,15  | 79179  | 125658,60     | 712,08  | 0,57  |
| 7  | KTAKP1007 | 23   | 19888,07  | 39,30  | 33406  | 53293,58      | 578,64  | 1,09  |
| 8  | KTAKP1008 | 52   | 44348,41  | 88,23  | 74996  | 119344,89     | 1001,78 | 0,84  |
| 9  | KTAKP1009 | 45   | 37854,72  | 75,36  | 64054  | 101908,72     | 832,12  | 0,82  |
| 10 | KTAKP1010 | 33   | 27917,77  | 55,57  | 47232  | 75150,23      | 617,22  | 0,82  |
| 11 | KTAKP1011 | 68   | 57968,05  | 116,39 | 98927  | 156895,45     | 785,20  | 0,50  |
| 12 | KTAKP1012 | 40   | 34251,38  | 68,37  | 58114  | 92365,54      | 659,91  | 0,71  |
| 13 | KTAKP1013 | 68   | 58019,34  | 116,69 | 99185  | 157204,23     | 689,79  | 0,44  |
| 14 | KTAKP1014 | 28   | 23758,31  | 47,07  | 40007  | 63765,71      | 632,84  | 0,99  |
| 15 | KTAKP1015 | 26   | 21715,75  | 42,88  | 36449  | 58164,55      | 647,26  | 1,11  |
| 16 | KTAKP1016 | 22   | 19035,64  | 37,55  | 31920  | 50955,29      | 585,07  | 1,15  |
| 17 | KTAKP1017 | 54   | 45632,94  | 91,49  | 77770  | 123402,46     | 680,74  | 0,55  |
| 18 | KTAKP1018 | 23   | 19970,26  | 39,46  | 33537  | 53507,46      | 584,74  | 1,09  |
| 19 | KTAKP1019 | 35   | 29614,23  | 58,99  | 50144  | 79758,28      | 629,69  | 0,79  |
| 20 | KTAKP1020 | 28   | 23762,14  | 47,07  | 40007  | 63769,54      | 636,80  | 1,00  |
| 21 | KTAKP1021 | 75   | 63569,59  | 127,86 | 108684 | 172253,27     | 750,23  | 0,44  |
| 22 | KTAKP1022 | 28   | 23758,31  | 47,07  | 40007  | 63765,71      | 632,91  | 0,99  |
| 23 | KTAKP1023 | 26   | 21677,14  | 42,88  | 36449  | 58125,94      | 608,64  | 1,05  |

Sumber: penulis, 2019



Sumber: penulis, 2019

Gambar 3. Diagram susut daya dan presentasi susut daya

#### 5. PENUTUP

#### 5.1 Kesimpulan

Berdasarkan analisis data pada bab sebelumnya, terlihat bahwa presentai susut (rugi) daya yang terjadi pada penyulang/feeder Karpan I kota Ambon dapat disimpulkan bahwa rugi/susut daya nyata penyulang 16031,66 Watt atau sebesar 18,10 % dibandingkan kapasitas beban penyulang yang sebesar 2349501,26 Watt, sedangkan rugi/susut daya nyata per gardu berkisar antara 582.92 Watt sampai dengan 1001,78 Watt. Susut daya terkecil terjadi pada gardu KTAKP1007 (0,42 %) dan susut daya terbesar terjadi pada gardu KTAKP1008 (1,15 %).

#### 5.2. Saran

Berdasarkan pembahasan dan analisa hasil serta kesimpulan, maka disarankan sebagai berikut:

- Untuk mengurangi rugi/susut daya pada penyulang, maka disarankan untuk memperbesar diameter kawat penghantar, yang awalnya 70 mm2 menjadi 95 mm2 atau 120 mm2..
- Pembagian beban pada trafo secara merata antara fasa R, S dan T, agar tidak terjadi kerugian tegangan yang berlebihan, yang nantinya mempengaruhi kerugian atau susut daya trafo secara keseluruhan.

#### DAFTAR PUSTAKA

- A.Kadir, Ir, 1989. Transformator, Penerbit, PT. Elex Media Komputindo, Jakarta,
- Arismunandar & Kuwahara. 1979. Teknik Tenaga Listrik Jilid III. Pradnya Paramita. Jakarta.
- A.S. Pabla dan A.Hadi, 1989. Sistem Distribusi Daya Listrik, Penerbit Erlangga, Jakarta,
- Kadir, Abdul. 1979. Transformator. Pradya Paramita. Jakarta
- Standard PLN 50, 1997. Spesifikasi Transformator Distribusi.
- PT. PLN, 1981. SPLN (Standar Perusahaan Umum Listrik Negara) 41-8.1981 dan 72.1987 "Hantaran Alumunium Campuran (AAAC)" dan "Spesifikasi Desain Untuk JTM dan JTR.",
- PUIL (PersyaratWan Umum Instalasi Listrik), 2000. Badan Standardisasi Nasional, Jakarta,
- Sulasno, 2000, Teknik dan Sistem Distribusi Tenaga Listrik, Penerbit Universitas Diponegoro, Semarang.
- Sumanto. 1991. Teori Transformator. Yogyakarta. Andi Offset. Yogyakarta.
- T.S. Hutauruk, 1993. Transmisi Daya Listrik, Erlangga, Jakarta,
- Unindo (---), Three Phase Transformer Data.
- Zuhal. 1994. Ketenagaan Listrik Indonesia. Penerbit : ITB. Bandung.