ANALISIS PENGGUNAAN MACHINE LEARNING TERHADAP PREDIKSI JUMLAH NASABAH PADA PRODUK AMANAH DI PT. PEGADAIAN CPS PANGKAJENE
DOI:
https://doi.org/10.31959/jm.v15i1.3638Abstract
Introduction: This study aims to analyze the use of machine learning in predicting the number of customers for Amanah products at PT. Pegadaian CPS Pangkajene. The issues examined include the application of machine learning, the selection of the most effective algorithm, and factors affecting prediction accuracy.
Methods: The study uses a quantitative approach, drawing on historical customer data over five years. The three machine learning models compared are SARIMA, Random Forest, and Linear Regression.
Results: The SARIMA model achieved the best performance, with a Mean Absolute Error (MAE) of 2.61%, a Root Mean Square Error (RMSE) of 2.94%, and a Mean Absolute Percentage Error (MAPE) of 8.58%. This model is the most accurate in predicting trends and seasonal patterns in customer numbers. The Linear Regression model showed less accurate results, while Random Forest excelled in reliability but was still less accurate than SARIMA.
Conclusion and suggestion: The application of machine learning, especially SARIMA, can be a strategic tool for business planning and decision-making in the Islamic finance sector, providing data-based recommendations to improve the performance of Amanah products.
Keywords: Amanah Product, Customer Prediction, Machine learning, Marketing Strategy, PT. Pegadaian, SARIMA
References
Alizamir, S., Bandara, K., Eshragh, A., & Iravani, F. (2022). A Hybrid Statistical-Machine Learning Approach for Analysing Online Customer Behavior: An Empirical Study.
Amuda, K. A., & Adeyemo, A. B. (2019). Customers churn prediction in financial institution using artificial neural network.
Ardiansyah, Risnita, & Jailani, M. S. (2023). Teknik Pengumpulan Data Dan Instrumen Penelitian Ilmiah Pendidikan Pada Pendekatan Kualitatif dan Kuantitatif. Jurnal IHSAN : Jurnal Pendidikan Islam, 1(2), 1–9. https://doi.org/https://doi.org/10.61104/ihsan.v1i2.57
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Cholissodin, I., S., S., A., S. A., U., H., & I., F. Y. (2020). AI, machine learning and deep learning.
Cowan, G., Mercuri, S., & Khraishi, R. (2023). Modelling customer lifetime-value in the retail banking industry.
Ebhuoma, O., Gebreslasie, M., & Magubane, L. (2018). A Seasonal Autoregressive Integrated Moving Average (SARIMA) forecasting model to predict monthly malaria cases in KwaZulu-Natal, South Africa. South African Medical Journal.
Fitrianah, D., Dwiasnati, S., H, H. H., & Baihaqi, K. A. (2021). Penerapan Metode Machine Learning untuk Prediksi Nasabah Potensial menggunakan Algoritma Klasifikasi Naïve Bayes. Faktor Exacta, 14(2). https://doi.org/https://doi.org/10.30998/faktorexacta.v14i2.9297
Goodfellow, I. (2016). Deep learning and Machine Learning. MIT press.
Handayani, N. R. W. T., Maslim, M., & Mudjihartono, P. (2020). Forecasting of Catfish Sales by Time Series Using the SARIMA method. Jurnal Buana Informatika, 11(2), 84–94. https://doi.org/https://doi.org/10.24002/jbi.v11i2.3535
Herman, B., Bashir, S., Syahnur, K. N. F., Haslindah, H., & Absah, Y. (2024). Transformation of SMEs: Strengthening Entrepreneurship and Product Innovation as Key Drivers of Business Evolution. Hasanuddin Economics and Business Review, 7(3). https://doi.org/https://doi.org/10.26487/hebr.v7i3.5239
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.
Kim, H., Cho, H., & Ryu, D. (2020). Corporate Default Predictions Using Machine Learning: Literature Review. 12(16).
Komala, N. C., & Padilah, H. N. (2023). Analisis Manajemen Organisasi Di Pt. Pegadaian (Persero) Cps Padasuka. Management Research, Vol. XVIII.
Kusuma, S. K. (2024). Perlindungan Hukum Terhadap Nasabah Dalam Hal Terjadinya Kerusakan Atau Kehilangan Barang Jaminan Gadai Di Pt Pegadaian Cabang Poncol Semarang.
Mardiyah, I., Utami, W. D., Novitasari, D. C. R., Hafiyusholeh, M., & Sulistiyawati, D. (2021). ANALISIS PREDIKSI JUMLAH PENDUDUK DI KOTA PASURUAN MENGGUNAKAN METODE ARIMA. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(3), 525–534. https://doi.org/https://doi.org/10.30598/barekengvol15iss3pp525-534
Mursalat, A., Razak, M. R. R., Mustanir, A., Ramlan, P., Irwan, M., & Aksan, M. (2025). STRATEGI PEMASARAN DIGITAL UNTUK MENINGKATKAN DAYA SAING PRODUK ABON CABAI LADATTA. 9(1).
Naufal, M. F., Subrata, Susanto, A. F., Kansil, C. N., & Huda, S. (2023). Penerapan Machine Learning untuk Prediksi Potensi Hilangnya Nasabah Bank. 22(1), 1–11. https://doi.org/https://doi.org/10.33633/tc.v22i1.7302
Rasikh, M. ., Riyyasy, A., Aghniya, Nouval, W., & H., T. (2023). Penerapan Algoritma Machine Learning Untuk Memprediksi Term Deposit Nasabah Perbankan. LEDGER: Journal Informatic and Information Technology, 2(3).
Sari, E. P., Bachri, S. M., Atnang, M., & Fajar, N. (2024). Studi Literatur Deep Learning dan Machine Learning untuk Analisis dan Prediksi Pasar Saham: Metodologi, Representasi Data dan Studi Kasus. Jurnal Teknologi Dan Sains Modern, 1(1). https://doi.org/https://journal.scitechgrup.com/index.php/jtsm
Shumway, R., & Stoffer, D. (2017). Time Series Analysis Using the R Statistical Package. Free Dog Publishing.
Sidik, A. D., & Ansawarman, A. (2022). Prediksi Jumlah Kendaraan Bermotor Menggunakan Machine Learning. Formosa Journal of Multidisciplinary Research, 1(3), 559–568. https://doi.org/https://doi.org/10.55927/fjmr.v1i3.745
Sihombing, P. R., & Arsani, A. M. (2021). COMPARISON OF MACHINE LEARNING METHODS IN CLASSIFYING POVERTY IN INDONESIA IN 2018. Jurnal Teknik Informatika (Jutif), 2(1), 51–56. https://doi.org/https://doi.org/10.20884/1.jutif.2021.2.1.52
Sudriyanto, S., & F. Syahro, N. F. (2023). PERBANDINGAN PERFORMA MODEL MACHINE LEARNING SUPPORT VECTOR MACHINE, NEURAL NETWORK, DAN K-NEAREST NEIGHBORS DALAM PREDIKSI HARGA SAHAM. Jurnal Advanced Research Informatika, 2(1), 13–21. https://doi.org/https://doi.org/10.24929/jars.v2i1.2983
Zailani, A. U., & Hanun, N. L. (2020). PENERAPAN ALGORITMA KLASIFIKASI RANDOM FOREST UNTUK PENENTUAN KELAYAKAN PEMBERIAN KREDIT DI KOPERASI MITRA SEJAHTERA. Infotech: Journal of Technology Information, 6(1), 7–14. https://doi.org/https://doi.org/10.37365/jti.v6i1.61
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Randy Arya Renaldi, Muhammad Rais Rahmat Razak, Haslindah, Rahman Yakub

This work is licensed under a Creative Commons Attribution 4.0 International License.








